Lab-wide Learning Outcomes for Cellular Respiration Explored

Knowledge-Based Outcomes

Upon completion of *Cellular Respiration Explored*, students should be able to:

- 1. Identify where potential energy is stored during respiration, including glucose, ATP, NADH, FADH₂, and the proton gradient.
- 2. Identify processes in respiration where potential energy is transferred from one place to another, and draw a diagram showing the flow of energy between molecules or other stores of potential energy in each process (e.g., NADH → ETC → proton gradient → ATP).
- 3. Identify places in respiration where molecules are being oxidized or reduced (especially glucose oxidized to CO₂, and NAD⁺ reduced to NADH).

Cellular Respiration Explored, Part 1: Cellular Respiration: Food, Breath, Exercise

Knowledge-Based Outcomes

Upon completion of Part 1: Cellular Respiration: Food, Breath, Exercise, students should be able to:

- 1. Draw a diagram showing the four major processes occurring during respiration, their relationships, and the relative amounts (none, a little, lots) of ATP produced in each.
- 2. Name the molecules that bring high-energy electrons into the electron transport chain (NADH, FADH₂) and point to where they are produced (glycolysis, pyruvate processing, the citric acid cycle).
- 3. Describe the role of ATP in a cell as the energy source in many reactions, describe its relationship to ADP and phosphate, and explain why ATP has more potential energy than ADP.
- 4. Define reduction as gaining electrons and oxidation as losing electrons.
- 5. Write down and explain the overall glucose \rightarrow CO₂ equation (glucose + 6 O₂ \rightarrow 6 CO₂ + 6 H₂O), and identify that this reaction releases energy.
- 6. Avoid the misconception that energy is converted into matter.

Skills-Based Outcomes

Upon completion of Part 1: Cellular Respiration: Food, Breath, Exercise, students should be able to:

1. In a redox reaction, identify what has been oxidized and what has been reduced based on the movement of electrons.

Cellular Respiration Explored, Part 2: Electron Transport Chain (ETC)

Knowledge-Based Outcomes

Upon completion of *Part 2: Electron Transport Chain (ETC)*, students should be able to:

- 1. Describe why oxygen is required for the ETC to function and identify that O₂ does not directly react with glucose.
- 2. Draw and/or interpret a diagram identifying the location (mitochondrial membrane) and primary function of several ETC complexes and ATP synthase, including where NADH and FADH₂ enter, where O₂ is used, and where ATP is made.

Skills-Based Outcomes

Upon completion of Part 2: Electron Transport Chain (ETC), students should be able to:

- 1. Predict how various perturbations to the ETC will alter ATP production and O₂ consumption.
- 2. Predict what will happen to whole-organism and cell metabolism based on perturbations to the ETC.
- 3. Given abnormal whole-organism metabolism or cellular ATP production, formulate a hypothesis that offers a mechanistic explanation for the abnormality.
- 4. Predict how changes to the H^+ gradient alter the forces acting on H^+ ions in mitochondria as well as how these changes alter ATP production.