Chapter-wide Learning Outcomes for Life History

Upon completion of *Life History*, students should be able to:

- 1. Discuss the role of evolution in shaping the variety of life-history strategies exhibited by populations.
- 2. Describe the principle of allocation as it relates to resource limitation and life-history strategies.
- 3. Describe and compare some fundamental life-history trade-offs experienced by organisms.
- 4. Demonstrate how demographic data can be used to inform management decisions for populations of threatened species.

Life History, Part 1: Life Cycles and Life Histories

Upon completion of *Part 1: Life Cycles and Life Histories*, students should be able to:

- 1. Explain in broad terms why there is incredible diversity in life cycles, providing examples to illustrate this variation.
- 2. Interpret a life cycle diagram.
- 3. Explain how constraints limit resource allocation and thus establish the trade-offs that shape life-history strategies.
- 4. Identify key life-history traits of organisms, such as age of first reproduction, lifespan, and fecundity.
- 5. Describe the trade-offs underlying three hypotheses that have been offered to explain variation in clutch size of birds.
- 6. Evaluate the evidence collected by Dijkstra and colleagues supporting the conclusion that kestrels lay fewer eggs than they can rear in a season because doing so increases their lifetime fitness.

Life History, Part 2: Life-History Parameters

Upon completion of *Part 2: Life-History Parameters*, students should be able to:

- 1. Determine from a population's per capita growth rate whether the population is stable, shrinking, or growing.
- 2. Estimate the per capita population growth rate, r, as the difference between the average per capita birth rate and death rate over a time period, t.
- 3. Explain that radically different life histories can be successful in the same environment.
- 4. Interpret a human population's age pyramid to determine whether the population is likely to be growing, shrinking, or remaining stable.
- 5. Draw the qualitative shape of the age pyramid predicted for several different populations with different demographics.
- 6. Explain how an age pyramid depicts the age structure of a population.
- 7. Generate hypotheses about demographic parameters and/or recent history of a population from its age pyramid.

Life History, Part 3: Life Tables and Survivorship Curves

Upon completion of *Part 3: Life Tables and Survivorship Curves*, students should be able to:

- 1. Use the information summarized in life-history tables to compare different conservation strategies.
- 2. Construct a life table from estimates of age-specific births (b_x) and number of survivors (n_x) , by calculating age-specific survivorship (l_x) and fecundity (m_x) .
- 3. Identify a species' survivorship curve as Type I, II, or III, and use this information to predict aspects of its life-history strategy.
- 4. Plot a survivorship curve using life table data.
- 5. Show how changes in age-specific survivorship and/or fecundity affect a population's net reproductive rate, R_0 , calculated as $R_0 = \Sigma l_x m_x$.

- 6. Show how changes in survivorship, fecundity, and/or the net reproductive rate affect a population's generation time, G, calculated as $G = \Sigma(xl_xm_x)/R_0$.
- 7. Estimate a population's growth rate, r, from its net reproductive rate, R_0 , and generation time, G.
- 8. Explain a human demographic transition in terms of the changes in birth, death, and population growth rates that typically occur as a country becomes more industrialized.

Life History, Part 4: Trade-Offs and Life-History Evolution

Upon completion of Part 4: Trade-Offs and Life-History Evolution, students should be able to:

- 1. Explain how evolution by natural selection can alter a population's life-history strategy over the course of generations.
- 2. Contrast how different life-history strategies may be favored in some but not other environments, using examples of costs, benefits, and trade-offs.
- 3. Draw a graph illustrating an example of a trade-off, such as allocation of resources toward fecundity vs. growth.
- 4. Discuss selective pressures that could favor the evolution of semelparity versus iteroparity.
- 5. Describe r-selected and K-selected life-history strategies, and explain the conditions that are expected to favor the evolution of each.
- 6. Explain the circumstances under which plants with ruderal, stress-tolerant, or competitive life-history strategies should be favored using Grime's life-history classification scheme.
- 7. Explain the circumstances under which fish with opportunistic, equilibrium, and periodic life-history strategies should be favored using Winemiller and Rose's life-history classification scheme.
- 8. Provide an example of a species that exhibits different strategies under different conditions (i.e., a species whose life history is plastic).