• HOME
  • GETTING STARTED
    • Quick Start Guide
    • Evaluation Software
    • Webinars 2025
    • Demo Videos
  • OUR PRODUCTS
    • All SimBio Modules
    • Textbook Replacements
      • SimBio Ecology
      • Intro Bio
    • Intro Bio
    • Ecology
    • Evolution
    • Cell Biology
    • Molecular Biology
  • DELIVERY SYSTEM
    • What is SimUText?
  • PRICING & ORDERING
  • ABOUT
    • Overview
    • Employee Ownership
    • Research & Publications
    • Blog
    • Testimonials
    • Jobs
    • Accessibility
  • TECH SUPPORT
    • Knowledge Base
    • Help for Students
    • FAQ – Instructors
    • Accessibility

Mobile Menu

  • Menu
  • Skip to right header navigation
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

SimBio logo

Simulated Biology. Real Learning.

  • Evaluation Software
  • Contact
  • Blog
  • HOME
  • GETTING STARTED
    • Quick Start Guide
    • Evaluation Software
    • Webinars 2025
    • Demo Videos
  • OUR PRODUCTS
    • All SimBio Modules
    • Textbook Replacements
      • SimBio Ecology
      • Intro Bio
    • Intro Bio
    • Ecology
    • Evolution
    • Cell Biology
    • Molecular Biology
  • DELIVERY SYSTEM
    • What is SimUText?
  • PRICING & ORDERING
  • ABOUT
    • Overview
    • Employee Ownership
    • Research & Publications
    • Blog
    • Testimonials
    • Jobs
    • Accessibility
  • TECH SUPPORT
    • Knowledge Base
    • Help for Students
    • FAQ – Instructors
    • Accessibility

Language, Lying, and Evolution

Home » All Things SimBio » Language, Lying, and Evolution

May 4, 2010 //  by John Herron

I recently received an email from a cognitive psychologist asking whether it is plausible that human use of language for deception is an adaptation. In other words, has there been sufficient time since humans began to speak for genetic variants associated with lying to rise to high frequency as a result of natural selection?

Here is my answer:

Last time I checked, expert opinion on when language evolved ranged from 2 million years ago to 40,000 years ago. The older number seems more plausible to me, but even if we take the most recent estimate that’s still at least 1,600 generations ago.

Imagine a gene with two alleles: t (for truth-teller) and l (for liar). Individuals with genotype tt always tell the truth. Individuals with genotype tl sometimes lie when it suits their interests—and have 1% higher reproductive success. Individuals with genotype ll always lie when it suits their interests and have 2% higher reproductive success. If the initial frequency of allele l is 0.0001, then after 1,600 generations it will be very nearly 0.999.

My model is obviously a gross over-simplification of how genetic variation might influence propensity to lie to get what you want. It is also a gross over-simplification of the mechanism of evolution in real populations. Among other things, I assumed an infinitely large population in which individuals chose their mates at random. But the model demonstrates the theoretical plausibility that genetic variation for verbal deception could lead to substantial evolution in the time we humans have been talking to each other.

You can try out other scenarios (stronger selection, finite populations, etc.) by playing with my AlleleA1 application. You will be able to do similar virtual experiments with the forthcoming Mendelian Pigs laboratory from SimBio.

Over the last several decades, population geneticists have published numerous empirical studies documenting rapid evolution in laboratory populations of insects. In my favorite recent example, researchers in Bruce Hay’s lab designed a new gene, inserted it into the chromosomes of fruit flies, established a lab population in which the novel gene was present at a known frequency, and watched the population evolve over 20 generations. Using a simple model like the one I used above, which assumes infinite population size, random mating, etc., they predicted that the allele’s frequency would rise from 0.25 to 0.90. Despite the model’s simplifications, the prediction was spot on.

Similarly rapid evolution has been seen in many natural populations. My favorite home-town example, featured in SimBiotic’s Evolution for Ecology SimUText chapter, comes from Katie Peichel’s lab at The Fred Hutchinson Cancer Research Center in Seattle. Peichel and colleagues documented change in the threespine stickleback population in Lake Washington following the cleanup of the lake in the 1960s. Before the cleanup, the vast majority of the sticklebacks had light armor plating (the extent of which is largely determined by a single gene with two alleles). By 2005, most of the fish had heavy armor plating.

As for documented examples of rapid evolution in human populations, an analysis of the S allele for beta hemoglobin—the allele associated with sickle-cell anemia—was published by Allison in 1965. Allison’s Table 4 shows the frequency of beta hemoglobin genotypes among Caribbean populations of African descent whose ancestors were forcibly relocated during the trans-Atlantic slave trade. Some of the present-day populations live on islands where malaria is common; others live on islands where malaria is rare. The frequency of the S allele is lower in the populations where malaria is absent. And it’s about what we’d predict using a simple population genetic model incorporating reasonable estimates for the frequency of the allele in the ancestral population, the fitnesses of the three genotypes in the absence of malaria, and number of generations that have elapsed since the forced founding of the new populations. (Students can explore the sickle cell example in SimBiotic’s Sickle-Cell Alleles lab.)

Another example is the evolution of life-long lactase production in human populations with a long history of dairying and drinking fresh milk. Other mammals, and most humans, stop making the enzyme after the age of weaning. This was undoubtedly the ancestral condition for us. Since the advent of dairying several thousand years ago, however, an allele of the lactase gene associated with adult lactase persistence has risen to a frequency of nearly 100% in some populations. Recent evidence indicates that this has happened more than once independently.

A third example: Human populations with a long history of eating a high-starch diet have more copies of the gene for amylase. This difference likely evolved, like lactase persistence, since the advent of farming.

All three human examples involve substantial evolutionary change in considerably less time than even the most recent estimates for when language evolved.

Finally, it seems worth noting that our capacity for deception likely predates our capacity for speech by tens of millions of years—if not hundreds of millions. Deception is widespread in nature. There are, to pick just a few examples, orchids that lie to their pollinators, flies that lie to their predators, and countless predators that lie to their prey. An entertaining (and fairly horrifying) case of auditory deception described was published in PLoS One last year.

Deception of conspecifics is common in primates, and correlates evolutionarily with brain size. The implication is that our ancestors were quite accomplished at lying to get what they want long before spoken language evolved. It seems likely that among the benefits that made speech advantageous was its utility as a tool for deception. And there’s been plenty of time since then for evolution by natural selection to refine this particular strategy.

Sources:

Noble and Davidson argue for a recent origin of language in Noble, W., and I. Davidson. 1991. The evolutionary emergence of modern human behavior: Language and its archaeology. Man 26: 223-253.

Tobias argues for an early origin of language in Tobias, P. V. 1987. The brain of Homo habilis: A new level of organization in cerebral evolution. Journal of Human Evolution 16: 741-761.

The study on fruit flies from Bruce Hay’s lab is Chen et al. 2007. A Synthetic Maternal-Effect Selfish Genetic Element Drives Population Replacement in Drosophila. Science 316: 597–600.

The study on sticklebacks from Katie Peichel’s lab is Kitano et al. 2008. Reverse evolution of armor plates in the threespine stickleback. Current Biology 18: 769–774.

Allison’s analysis of sickle-cell anemia in the Caribbean is Allison, A. C. 1965. Polymorphism and natural selection in human populations. Cold Spring Harbor Symposium in Quantitative Biology 29: 137-149.

For a start on the literature on the evolution of adult lactase persistence, see Enattah et al. 2007. Evidence of still-ongoing convergence evolution of the lactase persistence T-13910 alleles in humans. American Journal of Human Genetics 81: 615–625 and Enattah et al. 2008. Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. American Journal of Human Genetics 82: 57–72.

Documentation of differences among populations in copy number for the amylase gene is in Perry et al. 2007. Diet and the evolution of human amylase gene copy number variation. Nature Genetics 39: 1256–1260.

The story of auditory deception from PLoS One is Marshall, D. C. and K. B. R. Hill. 2009. Versatile Aggressive Mimicry of Cicadas by an Australian Predatory Katydid. PLoS ONE 4: e4185.

For the correlation between deception and brian size in primates see Byrne, R. W. and N. Corp. 2004. Neocortex size predicts deception rate in primates. Proceedings of the Royal Society B 271: 1693–1699.

Author

  • Jon Herron
    John Herron

    Dr. Jon C. Herron is the lead author of Darwinian Snails as well as most of SimBio's other evolution modules. He is the author of the popular Evolutionary Analysis textbook and is an award-winning educator.

    View all posts

Category: SimBio

Related Posts

An Undergraduate Intern’s Summer at SimBio

Mitosis Explored – SimBio’s new tutorial

Male Antelope Lie To Get Sex

Octopus Aces Physics Homework

Survival of the Fittest? Not Always.

E-Textbooks and the Blind

Is a picture worth 1,000 words?

Genomic Analysis of Identical Twins Finds Few Differences

Better Gene Discovery Through Evolutionary Reasoning

SimUText Ecology

The Talented Dr. Fox, Part 2

Majors vs. Non-majors

Previous Post: « Is a picture worth 1,000 words?
Next Post: E-Textbooks and the Blind »

Footer

Testimonials

“[SimBio’s modules] provide a powerful environment for hands-on, active learning in Ecology and Evolution. The depth, design, and pedagogical effectiveness of these packages is unequaled. They have greatly enriched student interest and understanding in all of my courses, from Introductory Biology to Advanced Population Biology”

— Dr. Brad Lister
Rensselaer Polytechnic Institute

“The lab simulations have been very helpful to reinforce the lecture content and encourage students to use critical thinking skills to solve problems.”

— Patti Fallest-Strobl
Neumann University

“I was amazed how quickly and effortlessly the simulation taught them a dynamic system.”

— Paula Philbrick
University of Connecticut

“The students like [it] so much that they are working ahead of what I have assigned. They just think it’s fun. And from the quiz results I have so far, they’re really getting it. You guys are geniuses.”

— Paulette Bierzychudek
Lewis & Clark College

“Since we began using Simbio’s Ecology chapters our students consistently come to class better prepared. This is a key to the success of our hybrid flipped classroom approach.”

— Dr. Peter Curtis
Ohio State University

“That was the most fun I’ve had teaching ecology and, I would venture to guess, the most fun my students have had taking ecology from me.”

— Matt Orr
Oregon State University, Cascades

“Our students are more prepared and our class discussions are more sophisticated because SimUText is such a great out of class “instructor”. Since our students have SimUText preparation we can spend class time applying concepts and evaluating new information.”

— Emily Bernhardt
Duke University

“I LOVE that every lab is based on a real study. I LOVE that all of the labs offer an open-ended inquiry. I LOVE that the labs gradually teach the concepts and build up a repertoire of data collection techniques. Thank you, for creating them.”

— Jeanette Williams
Community College of Vermont

“I just wanted to say how great simutext has been. I could have memorized facts about the electron transport chain and passed the test, but would not have had any solid concept of what was happening inside. I hope that we continue to use it often even when things return to normal.”

— Student
Rochester Community and Technical College

“Congratulations for developing such a high quality chapter. I was very impressed by its comprehensiveness, accuracy, and thoughtful design. It really is superb.”

— Richard Boone
Humboldt State University

“I recommend your modules to anyone I can, because of all the online materials I’ve found, SimBio is really the best in content and best managed. I am definitely a SimBio fan!”

— Valerie Anderson
Marymount California University

All Things SimBio

  • Jaz DonkohIn-class learning or homework?
    By Jaz Donkoh
    September 18, 2024
  • John RoachSimBio Ecology – Comprehensive ecology education
    By John Roach
    July 18, 2024
  • John RoachRisk, Insurance, & Climate Policy
    By John Roach
    June 21, 2024
More Blog Posts →

Contact

Shipping: 1280 S. Third St W., Missoula, MT 59801
Billing: P.O. Box 7158, Missoula, MT 59807
Phone: (833) 314-7701
Fax: (617) 279-0055
Questions?

SimBio Order Form
VPAT / Accessibility Statement

Site Footer

  • Facebook

Copyright © 2025 SimBio. All Rights Reserved. Trademarks.